Adenosine deaminase 2 deficiency (DADA2) is a recently defined inborn error of immunity caused by loss-of-function mutations in the ADA2 gene. Patients suffer from severe manifestations, including early-onset lacunar strokes, intracranial hemorrhages, vasculitis/vasculopathy, systemic inflammation, immunodeficiency, and hematologic abnormalities. The therapeutic benefit of the current treatments is unsatisfactory. Anti-tumor necrosis factor therapy reduces strokes and systemic inflammation but does not correct cytopenia and bone marrow failure. Allogeneic hematopoietic stem/progenitor cell (HSPC) transplantation can ameliorate most disease manifestations, but patients are at risk for complications. Therefore, we proposed that autologous HSPC gene therapy may be an alternative curative option for patients who has no compatible donor or cannot receive intense chemotherapy.

We performed an in-depth study, using multiparametric flow cytometry, of the bone marrow (BM) cell composition of three adult patients with the hematological phenotype of DADA2. Compared with healthy donors (HDs), patients' BM exhibited a reduced number of mature and immature populations belonging to different hematopoietic lineages. Patients exhibited a substantial reduction in circulating neutrophils and hematopoietic stem cells and progenitor pools in the BM. Severe neutropenia and HSPC defects are direct causes of DADA2. Indeed, ADA2 knock-down in zebrafish - as rodents do not harbor an ADA2 orthologue gene - caused a significant decrease in neutrophil and HSPC numbers, reminiscent of patients' phenotype. Administration of human recombinant ADA2 effectively corrected both neutropenia and defective hematopoiesis in the zebrafish embryo.

We used a third-generation LV to restore constitutive ADA2 expression in HSPCs. Transduction of healthy donors' HSPCs allowed efficient delivery of the functional ADA2 enzyme with no toxicity. Supranormal ADA2 expression in healthy donors' and patients' HSPCs was well-tolerated and did not impact HSPC multilineage differentiation potential in vitro and in vivo. We also assessed whether LV-derived ADA2 could correct the hyperinflammatory M1 macrophage phenotype characteristic of DADA2. ADA2 reconstitution in patients' macrophages led to the normalization of IL-6 and TNF release. Similar results were obtained using M1 macrophages differentiated from ADA2-transduced HSPCs. Altogether, our findings indicate that HSPC gene therapy is a promising approach to re-establish stable ADA2 activity and correct the hematological and inflammatory manifestations in patients with DADA2.

Disclosures

Aiuti:Orchard Therapeutics: Other: PI of clinical trials sponsored by company.

Sign in via your Institution